Case study 9F – Lakes and resevoirs in Central Europe

Souza, **Allan T.,** Kubečka, J., Boukal, D., Blabolil P., Čech M., Frouzová J., Juza, T., Matěna, J., Moraes, K., Muška, M., Prchalová, M., Rahimi, A.M., Říha, M., Šmejkal, M., Tušer, M., Vašek, M.

Reference case

2020 International Forum on the Effects of Climate Change on Fisheries &

Aquaculture 25-26 February 2020, Rome

Biological forecasting and modelling

• Thermal optimum

• Differences

among fish

families

ClimeFish

Biological forecasting of reproduction of Carp

- Viable populations
 - Climate effects
 - Precipitation
 - Temperature
 - Southern Europe

ClimeFish

- Indigenous areas
- Non-indigenous areas

Probability

Biological forecasting of growth

- Issues when calculating fish growth
 - Ontogenetic changes on otolith shapes
 - Interpopulation differences
 - Development of a novel backcalculation model

ClimeFish

The main example of real life: fisheries of Lipno reservoir

- Largest Czech waterbody 5000 hectares
- Studied species
 - Pikeperch (Sander lucioperca)
 - Eurasian perch (Perca fluviatilis)
 - Common carp (Cyprinus carpio)
- Stakeholders

ClimeFish

- Angling Union, 10000+ anglers
- 100000-150000 visits/year

Biological forecasting

- Pikeperch
 - IBM forecasting the biomass and yield of pikeperch was developed
- Eurasian perch
 - New method to calculate the somatic growth was developed
 - Growth predictions
- Common carp, wels catfish
 - Modelled dynamics under angling pressure

ClimeFish

Biological forecasting

Pikeperch catches in Lipno Reservoir

Biological forecasting

Fishing pressure
Intermediary level
Climate pressure
Mild effects

 Productivity plays an important role

ClimeFish

2020 2030 2040 2050

Climate scenario

*** * * ***

HC

2020 2030 2040 2050

KNMI

2030 2040 2050

SHMI

Year

2020

Major risks and opportunities

- Risks
 - Loss of cold-water species
 - Overfishing of commercial species
 - Northwards expansion of carp populations
- Opportunities
 - Increased production of emerging warm water fish (catfish, pikeperch and carp)
 - Predatory species can be exploited as new biomanipulation tools

Adaptation measures

- Protection of cold-water fish
 - Strict fishing management
 - Avoiding the establishing invasive species
- Fishery regulations

ClimeFish

- Fishermen's utilisation of emerging species
- Biomeliorative measures
 - Water level manipulation during spawning, stocking of predatory species
 - Biomeliorative catches

Impact on local level

- Salmonid fish might be considered luxury goods
 - This may not mean the decrease of its economic importance if people are willing to pay for luxury goods
- Warm water fishery has to be changed
 - Finding the right balance of the developing food web may be a challenge as even emerging species can be overfished
 - Future challenges may lead to improving fisheries management as a whole

ClimeFish

- Salmonids are luxury resources which need maximum protection
- Eat the carp instead! Get ready to increased production of warmwater species! Utilize it!

Thank you for your attention

