C11a: North East Atlantic Salmon Aquaculture

Simulation case

2020 International Forum on the Effects of Climate Change on Fisheries & Aquaculture 25-26 February 2020, Rome

Case study description

- Atlantic Salmon
 - On-grown in sea cages
- Norway, and Scotland
 - Main salmon producers
 - 1.3MT produced in Norway
 - 72.5 billion NOK (7.2 billion Euros)
- Main stakeholders
 - producer companies
 - regulators
 - feed manufacturers

Biological Forecasting (WP3)

Biological forecasting

- Climate projection
 - RCP4.5 from NorESM-ROMS regional model
- Direct effects of projected temperature on fish growth
- Variation by site and stocking strategy
- Also: more extreme temperatures and events such as feed withdrawal
- Responses: growth; impact on biomass that can be grown over a period for given stock; and time to harvest particular weight of fish.

Modelling Challenges

- Discrete sites with specific hydrodynamic conditions
 - Global and regional climate models do not capture site specific details
- Variation in stocking strategies
 - that have different physiology
 - exposed to different seasonal effects.
 - Extreme events (temperature, disease...) have additional impacts on production.
- Extremes
 - management and fish respond to temperature thresholds not all changes are gradual, and limited quantitative data on effects of extremes

Calibrating temperature projections

Comparing farm measurements and model outputs

Bias correction

Falconer et al (2020) *The importance of calibrating climate change projections to local conditions at aquaculture sites,* Aquaculture, Volume 514,

https://doi.org/10.1016/j.aquaculture.2019.734487

$$T_{BC1}(t) = M_{FUT}(t) + (\overline{O_{REF}} - \overline{M_{REF}})$$

BC1

- Does not capture extremes
- generally good approximation of average conditions
 BC2
- introduces more variation compared to BC1
- values are exaggerated.

Modelling Growth

Management variation

- Stocking size
 - Approx 100g to 500g or more, with a trend to bigger fish
- Stocking season
 - fish deployed in Autumn with no winters in freshwater (S0); or Spring with one winter in freshwater (S1)
 - These fish have life-long differences in growth
- Feeding intensity varies between farms
 - Some monitoring and management practices allow for greater feed quantities and faster growth
- Fish feeding rate varies with daylight (hence latitude) and temperature
- A commercial model for feed planning was used to model these variations

Extreme events

- Basic models do not capture range of issues that affect fish and farms at extreme temperatures (e.g. >16 degrees)
- Discussion with farmers showed
 - Feeding halted at low (freezing) and high (>16 degree) temperatures
- These extremes occur for many short periods in projections.
- Existing models did not capture effect on fish
 - Added simulation of this intervention to biological model
 - Also: Feed withdrawal due to increased disease frequency
 - Also: More extreme temperatures than RCP4.5
- Issue: lack of high resolution data at extremes to properly calibrate models

Biological Model Structure

- 'Dynamic Energy Budget' (DEB) model
 - Growth of a salmon day-by-day smolt to harvest
 - Growth depends of temperature and feed
 - Apply to every year, location, multiple stocking scenarios

Biological Forecasting Results

Example Growth Curves – RCP4.5

Risks and Opportunities Adaption Measures

Key Lessons

- Outcomes are site specific
 - And temperature projections must be calibrated to sites
- Variation is driven by extremes
 - Presence of heatwaves matter more than changes in the average
- Adaption depends on understanding management
- Existing management practices give scope for adaption
- We need to understand how multiple stressors interact as climate changes
 - Disease, treatments, nutrient demands, breeding...
 - Monitoring is critical

References

- Falconer et al (2020) The importance of calibrating climate change projections to local conditions at aquaculture sites, Aquaculture, Volume 514, https://doi.org/10.1016/j.aquaculture.2019.734487
- Climefish deliverable D3.3 (Case study C11A)

