C10A Hungarian pond aquaculture – the software

Implementation case

Gergő Gyalog

2020 International Forum on the Effects of Climate Change on Fisheries & Aquaculture 25-26 February 2020, Rome

Principles of the Hungarian DSS

- Pond aquaculture: farm-level decision
- The Hungarian DSS was designed to <u>support</u> <u>decision at farm level</u> and not at regulation level
- Focuses on strategic direction of input management under CC
- <u>Helps to identify stock and feed</u>
 <u>management strategies most adaptive to CC</u>
- Only strategic guiding, not a precision tool

→ does not regulate daily managerial intervention!

Main interface of DSS

👱 Pond/Lake Aquaculture in Hungary

User defined parameters:

Kosice OUtherod DARASES TOA	select simulation climate scenario RCP4.5 v stocking weight (g) 475 v time frame 2000	Gross yes
Mitek wytegyhaza oSatu Mare Bas	management option carp 3 v natural mortality 26 v get bio. result	Farming technology
Northern Great Plain simulation location	feeding rate /stocking rate feeding rate 1501 v stocking population 150 v gross yield (kg/ha) 583,29 show graph net yield (kg/ha) 433,29 show graph	 Stocking density (kg/ha) 10 options
Rated Action	FCR (kg feed/kg net yield) 3.46 final individual weight (kg) 2.48	 Mortality 35% per season

Location, time and scenario

- RCP4.5 / RCP8.5
- present, 2020, 2030, 2050
- 2 simulation locations

• Ind. weight of stockers

26% per season

18% per season

- 350g
- 475g
- 600g
- Feeding rate (kg/ha/season)
 - 8 options

Biological Outputs

Farm-level economic module

- Costs categories → Feed + Stock +
 Labour + Water + Other
- Unit cost of inputs and price of output are user given
- Default values are market avg. (2017)
- Labour requirement (FTE/100ha) is also user given
- 2 main financial indicators are calculated:
 - Per-unit cost (HUF/kg)
 - Net income (HUF/ha)
- Generated graphs visualize cost and income functions

economic simulation

Please enter for the economic calculations the following prices / cost.

Optimizing mangerial intervention

Provides optimal combination of

- Feeding rate
- Stocking density
- Ind. weight of stokers

Minimal values for per-unit costs

climate scenario	RCP4.5 V	species	Common carp	targeted fina individual we	al eight(kg)	2				U	Init cos	(Ft/kg)	per sto	cking	popula	ition f	or diffe	ent fe	eding r	ates
select farm location	south_pond $ \sim $	time frame	2030 🔻	tolerance ta	raeted		Optimze		500 T										_	4000/376/350 4000/350/350
management option	carp3 v	natural mortality	18 🔨	final individu	ual weight(%)	10														4000/310/350 4000/450/475
Please enter for the	economic calculati	ons the followir	ng prices / cost.													1				3500/310/350
					L.	abor per 100 ha	5		400				_							3500/270/350
Feed price	44	Prices st	tocking	690						1	1									3500/400/475
Carp 3 sales price		carp1			W	Vater service fee	2													3000/400/4/0
/market price	580	Average	gross	196000																4000/270/350
Cam 2 sales price		salary of v	worker		W	Vater abstraction charg	e 0.5													3000/270/350
/market price	638	Other cost	ts	42000	V	Vater provided free of			300											
Diana da dalar	0.00	(depreciat	tion.rent.repair)	42000	a	bstraction charge	10000		500											
Prices stocking	620				-	S. 1														
carp2	030	Other rev	renues	65000	5	tocking costs of other olvcultured species	20000	1 ×												
resulting 5 best feedir	ng rates /stocking i	rates						Ľ.,	200											
feeding rate		stocking p	population	sto	cking weight (g)			200											
4000 4000 4000 4000	^	376 350 310 450		A 35 35 35 47	50 50 75	^			100											
3500	\sim	310		V 35	ŏ	~														
0000		010																		
						-														
FCR (kg feed/kg net y	vield) 3,1816988	show graph	gross yield ((kg/ha) 1633,19	show graph	Unit cost 388,	727275 show graph													
inal individual weight(kg) 1,84	show graph	net yield (k	g/ha) 1257,19	show graph	Total cost	654865,49		0+	1	2 3	4	5	6	7	8	9	10	11	
specific water use (m³/kg weight gain)	12,251290	show graph	Calculated	profit 357384,70	show graph	Total revenue	1012250,2						result	numbe	er					

👱 optimize

select simulation

ClimeFish

Comparing individual growth between locations and RCP scenarios

Compare scenario/location Compare individual growth Optimization portunities 👤 individual weight time frame 2016-25 \sim individual weight in kg show graph north pond individual weight in kg for feeding rates/stocking population combinations individual weight in kg for feeding rates/stocking population combinations 3 feed/stock 3-- 0/110 999 / 190 2.5 2.5 2001 / 270 2500 / 350 - 3000 / 400 2 — 4002 / 450 **RCP 4.5 RCP 8 5** ₽ 1.5· ₽ 1.5 0.5 0.5 0 0 2019.04.01 2019.06.01 2019.08.01 2019. 10. 01. 2019.04.01 2019.06.01 2019.08.01 2019. 10. 01 2019.05.01. 2019.07.01 2019.09.01. 2019, 11, 01, 2019.05.01 2019.07.01. 2019.09.01 2019, 11, 01, day day south pond individual weight in kg for feeding rates/stocking population combinations individual weight in kg for feeding rates/stocking population combinations 3 feed/stock 3 - 0 / 110 — 999 / 190 2.5 2.5 2001 / 270 — 2500 / 350 - 3000 / 400 2 2 **RCP 4.5 RCP 8.5** — 4002 / 450 2 1.5 **₽** 1.5 0.5 0.5 0-0 2019.04.01. 2019.06.01. 2019.08.01 2019. 10. 01. 2019.04.01 2019.06.01 2019.08.01 2019. 10. 01. 2019.05.01. 2019 07 01 2019.09.01. 2019.11.01. 2019 05 01 2019.07.01. 2019.09.01. 2019. 11. 01. day day

ClimeFish

This project has received funding from the European Union's Horizon 2020 research and innovation action under grant agreement no. 677039

feed/stock

0/110

999 / 190

- 2001 / 270

- 2500 / 350

3000/400

- 4002 / 450

feed/stock

999 / 190

- 0 / 110

2001 / 270

— 2500 / 350

— 4002 / 450

- 3000 / 400

×

Risk assesment in DSS

👱 riskassesment				-	
Category Water use Fish growth and feeding Biomass losses Pond food web Water use	Climate Change	e Driver Increa	ased air and water temperature, changes in precipitation patterns		
Water quality Potential Im	Risk Score	Risk Rating	Potential Impacts	Risk Score	Risk Rating
Decreased water availability Increase in water prices Increased evaporation losses	2 1 3	Moderate Minor Moderate			

Thank you for your attention!

