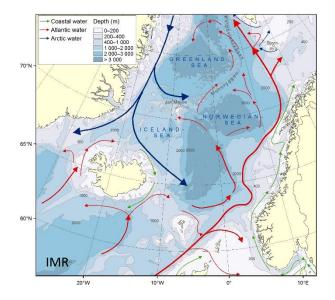
Simulation case: North East Atlantic Pelagic Fisheries

Assessing future climate effects on the pelagic complex in the Norwegian Sea

2020 International Forum on the Effects of Climate Change on Fisheries & Aquaculture 25-26 February 2020, Rome


Solfrid Sætre Hjøllo, E.A Mousing, K.R. Utne, S. Agnarsson, J. Arias-Hansen, R. Friðriksdóttir, U. Laksá, M.D. Skogen, J. R. Viðarsson, S.Ö. Ragnarsson

North East Atlantic Pelagic Fisheries

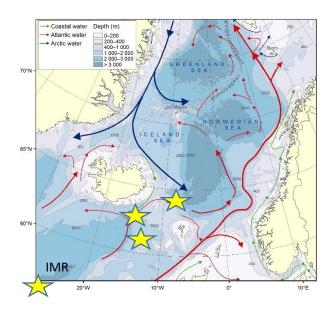
- A multinational fishery of pelagic stocks that cross multiple EEZs and high seas
 - Norway Greenland
 - Iceland EU
 - Faroe Island Russia

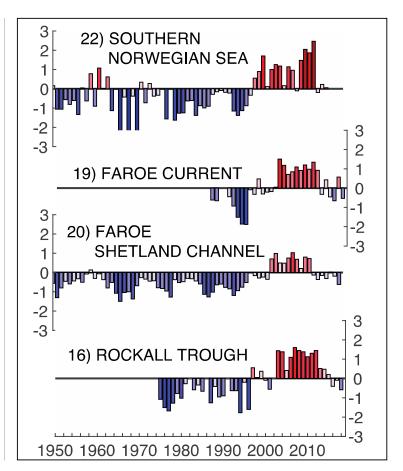
- Species considered and modelled:
 - Mackerel

ClimeFish

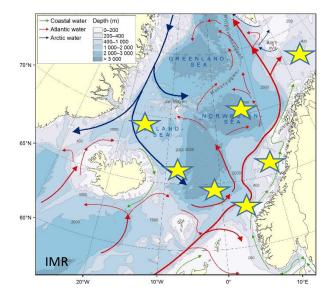
- Blue whiting
- Norwegian spring spawning herring

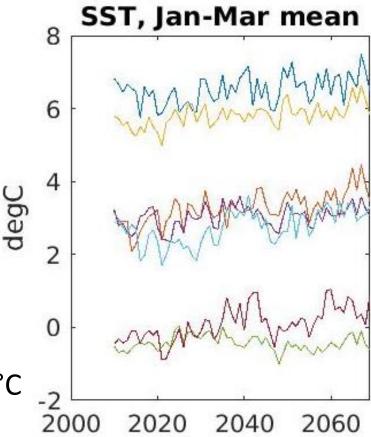
Challenges


- Complex negotiations on quota allocations and lack of overarching quota sharing agreements
- Current unilaterally set quotas exceed scientific advice
- Root cause of disagreements: <u>distributional changes of stocks</u>

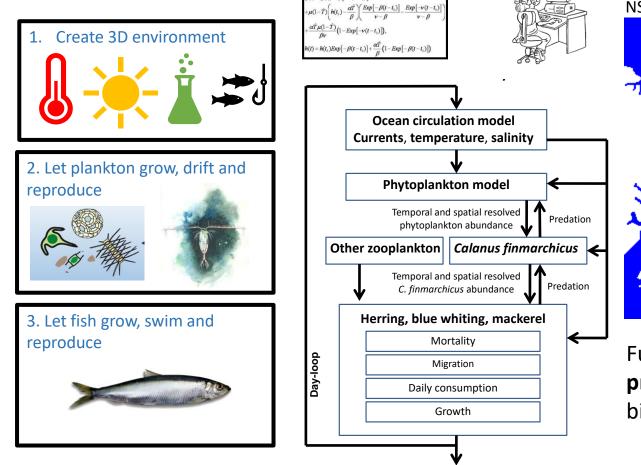


The Norwegian Sea are warming

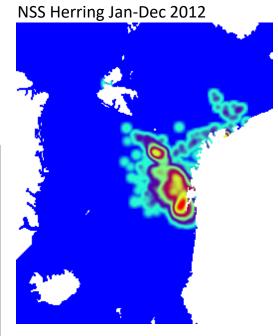



Temperature anomalies (°C). IROC 2018

Warming are projected to continue



- Temperature changes ~ 0.3-0.7 °C
- Northward extension of warmer water



Forecasting future ecosystem state

 $p(t) = g(t)Exp(-\eta h(t)),$ $g(t) = g(t_0)Exp[-\nu(t-t_0)]$

Full 3D representation of **present** and **future** fish biomass and distribution

ClimeFish

Utne et al (2012), Hjøllo et al (2012), Huse et al (2018), Skogen et al (2018), Mousing et al 2020

Biological forecasting with NORWECOM.E2E ecosystem model

- Including full lifecyles modules for fish and it's prey
- Starting with realistic fish stocks from analytic assessments
- Harvest control rules included: F reduced if SSB < trigger level
- Daily resolution in time and 10km in space, allows for movement
 - Generic fish movement routine:temperature, food, stock density.

MOVE to best suitable habitat nearby

ClimeFish

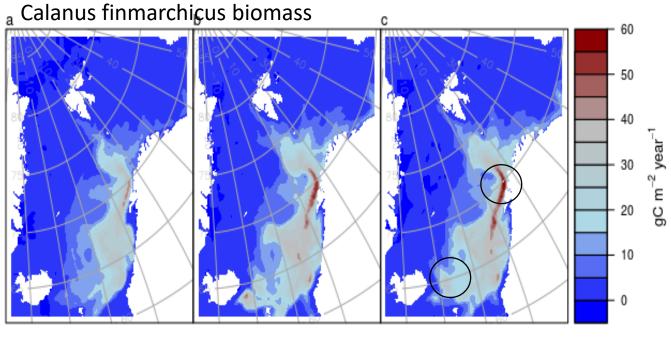
Based only on 1 single possible future climate evolution and 1 ecosystem model

Mousing et el 2020, ClimeFish D3.3

Changes in fish distribution

10 Mackerel gC m⁻² 0.1 Blue Whiting Έ ပ္ထ Herring Έ ပ္ထ 0.

2045-2054 2060-2069

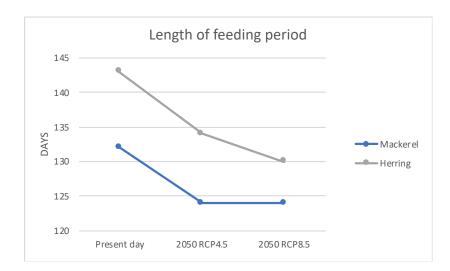

Present day

ClimeFish D3.3

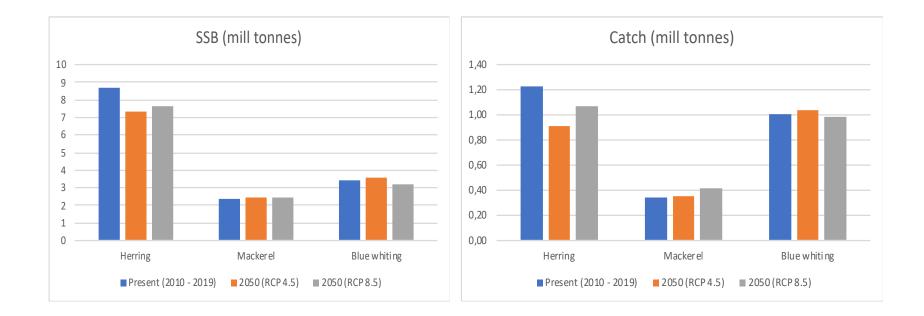
Increased food availability

Present day

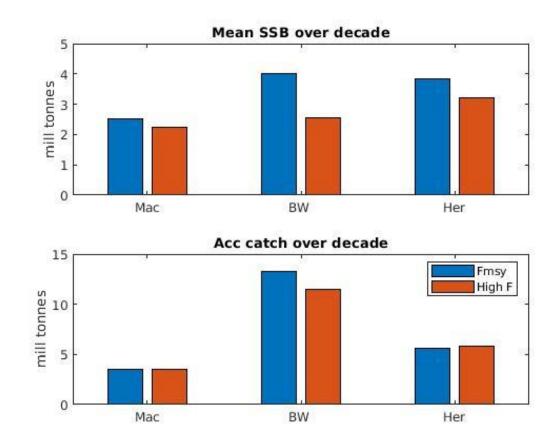
2045-2054

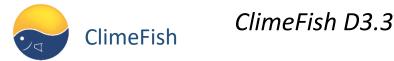

2060-2069

Individual growth


 Better feeding conditions will in general give faster growth and a shorter feeding period

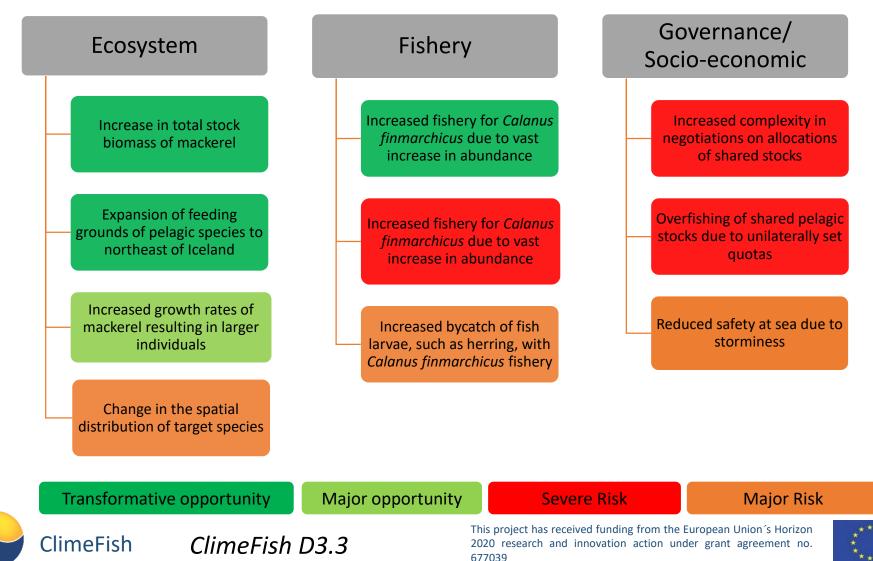
Changes in biomass and catch: all-area





Human pressures: overfishing

- ✓ Fishing at F_{msy} or with high F
- Management
 influence
 accumulated catch:
 - ✓ F was lowered if SSB dropped below trigger level



Risk/Opportunity Level

Major risks and opportunities

Socio-economic analysis

Impact of changes in catches:

- Industry level income, operating costs and profits
- National level value added and multiplier effects
- Simple linear relationships assumed

Projected profits – all catches % changes from baseperiod (2010-2019)

■ RCP4.5 2020 ■ RCP4.5 2030 ■ RCP4.5 2050 ■ RCP8.5 2050

ClimeFish D4.2

Adaptation measures

<u>Industry</u>

- Participation in and gear development for - Calanus fishery
 - Including exclusion devices
- Increased marketing effort for new emerging species
- Robust vessels and gear development

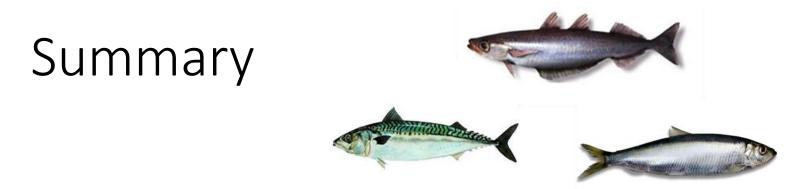
Research needs

- Research migration of target species
 - Spatial changes and timing
- Research on possible fishery for *Calanus*
 - Ecosystem effects, bycatch, gear development, etc.

ClimeFish D5.9

Adaptation measures

Need for overarching sharing agreements to prevent overfishing due to unilaterally set quotas


Policy recommendations include:

- Revision and settlement of allocation keys and criteria
- Regular revision of allocation keys
- Explore feasibility of including more than one pelagic stock in the agreements
- Area closures for *Calanus* fishery

ClimeFish D5.9 and D5.1

- Changing biomass, catches and spatial distribution of target species, negative effect of overfishing on SSB
- Transformative opportunities and severe risks
- Projected reduced profits

Thank you for your attention

References

ClimeFish deliverables

- D1.5 Updated case study characterization for all cases
- D3.3 Production-biomass and distribution scenarios for simulation and implementation case studies
- D4.2 Socio-economic assessment for case studies for a range of IPCC scenarios
- D4.3 Climate-related risks and opportunities of climate change for fisheries and aquaculture in Europe
- D5.1 Good regulatory practice recommendations on how to address legal challenges associated with developing strategies for fisheries, aquaculture and lake and pond production
- D5.9 Report on strategies developed for each case study based on general guidelines

Publications:

- Hjøllo SS, Huse G, Skogen MD, Melle W. (2012). Modeling secondary production in the Norwegian Sea with a fully coupled physical/primary production/individual-based Calanus finmarchicus model system. Marine Biology Research 8:508_26.
- Huse Geir, Melle Webjørn, Skogen Morten D., Hjøllo Solfrid S., Svendsen Einar, Budgell W. Paul (2018): Modeling Emergent Life Histories of Copepods. Frontiers in Ecology and Evolution.
- Mousing et al (2020): Pelagic fish migration patterns (In prep)
- Skogen, SS Hjøllo, AB Sandø, J Tjiputra (2018). Future ecosystem changes in the Northeast Atlantic: a comparison between a global and a regional model system ICES Journal of Marine Science, <u>https://doi.org/10.1093/icesjms/fsy088</u>
- Utne KR, Hjøllo SS, Huse G, Skogen M. (2012). Estimating consumption of Calanus finmarchicus by planktivorous fish in the Norwegian Sea using a fully coupled 3D model system. Marine Biology Research 8:527_47.

