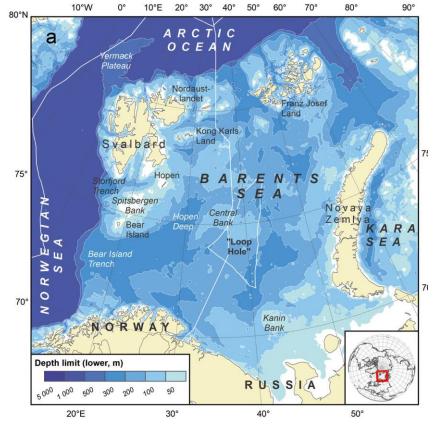


2020 International Forum on the Effects of Climate Change on Fisheries & Aquaculture 25-26 February 2020, Rome

Staby, A & Fossheim, M Institute of Marine Research Norway



Case study description

- Shelf sea bordering the Arctic Ocean, mainland Russia and Novaya Zemlya, mainland Norway and Svalbard, and the Norwegian Sea (Lat: 68-82°N, Long: 15-60 °E)
- Average depth 230 m and max depth 500 m

ClimeFish

Jørgensen et al. 2019

Case study description

Which species:
 Cod
 Haddock
 Snow crab

Photo credit: Thomas de Lange Wenneck

Photo credit: Thomas de Lange Wenneck

Main stakeholders:

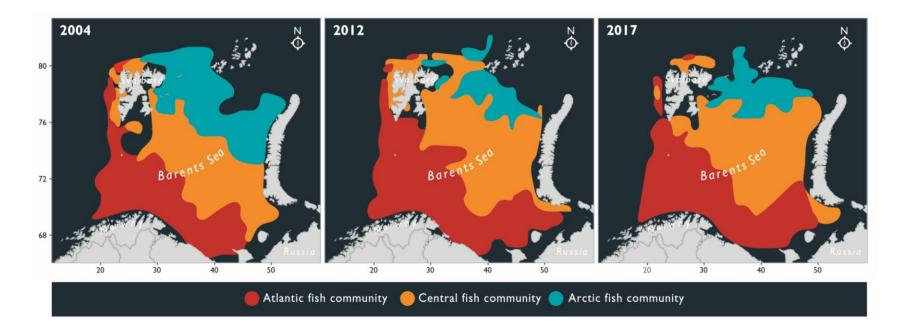
 Oceanic Fisheries
 Coastal fishing communities
 Coastal communes

Photo credit: Erlend Astad Lorentzen

Major opportunities

Photo credit: Thomas de Lange Wenneck

- Cod and haddock are likely to benefit from both a moderate increase in temperature and a related increase in secondary production (Bogstad et al. 2013; Landa et al. 2014)
- Haddock distribution can further expand into the north-eastern parts (Haug et al. 2017) and increase of the area of distribution and new feeding grounds may open up new seasonal fishing grounds



Major opportunities

Change in fish communities (composition and abundance)

ClimeFish

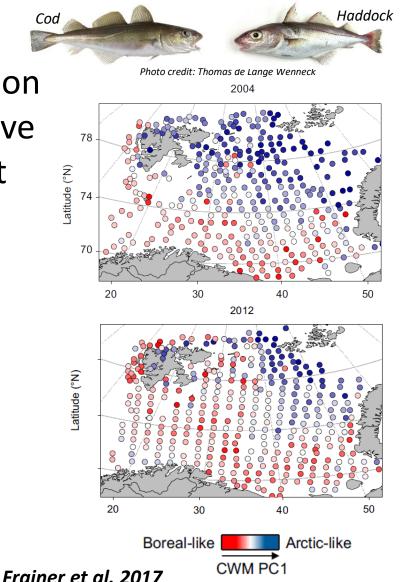
Fossheim et al. 2019

Major opportunities

Snow crab

Photo credit: Erlend Astad Lorentzen

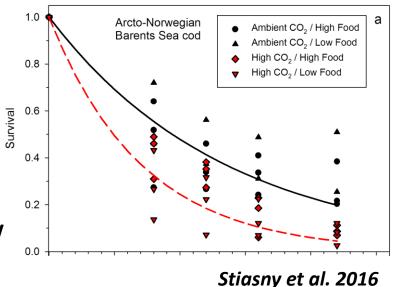
- Under current conditions a further expansion of the snow crab into northern and north-western areas (around Svalbard) of the Barents Sea may on the long-term result in new fishing opportunities
- An increase in abundance and distribution of the species may result in it becoming an additional prey item of demersal organisms, including cod (WGIBAR report 2018)



Major risks

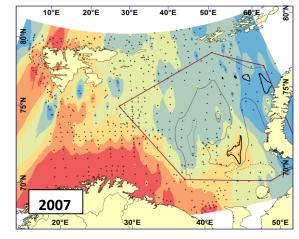
- Increased area of distribution of cod and haddock can have potentially negative impact on pelagic and benthic fish species such as polar cod (Renaud et al. 2012)
- Result in local decrease of species diversity and abundance, and possible changes in community structure (Frainer et al. 2017)

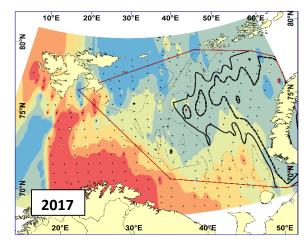
ClimeFish

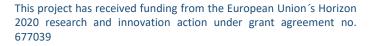

Major risks

- Increase in acidification and decrease in thermohaline circulation may result in reduced growth and survival of cod larvae and a subsequent decline of cod biomass (Stiasny et al. 2016)
- Short-term predictions show a reduction of the adult cod stock (Årthun et al. 2018)

Photo credit: Thomas de Lange Wenneck

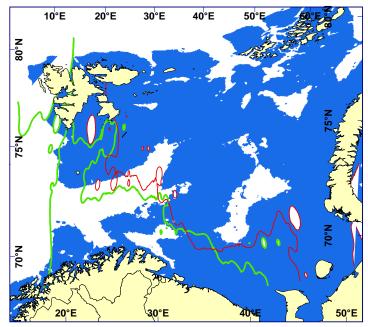





Major risks Photo credit: Erlend Astad Lorentzen

- Increased area of distribution of snow crab (ClimeFish D1.3) can have potentially negative impact and benthic organisms due to increased predation
- Result in local decrease of species diversity and abundance, and possible changes in community structure (Jørgensen et al. 2019)

Snow crab


Major risks

Snow crab

- Snowcrabs' temperature ' preferrence is -1 to 3°C, with a strong correlation between depth and temperature (ClimeFish D1.3)
- An increase in temperature will very likely restrict further expansion of area of distribution (ClimeFish D 1.3; Bakanev 2016)

Photo credit: Erlend Astad Lorentzen

Red and green lines show the 3^oC border in 2016 and 2017 respectively. The blue area shows the area covering depths to 300 m.

References

- Bakanev S.V. 2016. The snow crab stock assessment methods. Stock dynamics. In: Snow crabs Chionoecetes opilio in the Barents and Kara Seas (eds by K.M. Sokolov, Pavlov V.A., Strelkova N.A. et al.). Murmansk: PINRO press: 158-166. (In Russian).
- Bogstad, B. et al. 2013. Changes in the relationship between sea temperature and recruitment of cod, haddock and herring in the Barents Sea, Marine Biology Research, 9: 895-907
- ClimeFish. 2018. Empirical analysis of the historical effects of climate change on fisheries and aquaculture production. Deliverable 1.3, Ed. Baudron, A., 200pp
- Frainer, A. et al. 2017. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences, 114:12202-12207
- ICES. 2018. WGIBAR 2018 REPORT 9-12 March 2018. Tromsø, Norway. ICES CM 2018/IEASG:04. 210 pp.
- Jørgensen et al. 2019. Impact of multiple stressors on sea bed fauna in a warming Arctic. Marine Ecology Progress Series, 608: 1-12
- Landa, C. et al. 2014.Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: A case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fisheries Oceanography 23: 506-520
- Renaud, P.E. et al. 2012. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? Polar Biology 35: 401-412
- Stiasny, M.H. et al. 2016. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE, 11:e0155448.
- Årthun, M. et al. 2018. Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE 13(10): e0206319. https://doi.org/10.1371/journal.pone.0206319

