Fisheries and Aquaculture in the face of Climate Change. A policy perspective

Ernesto Penas

2020 International Forum on the Effects of Climate Change on Fisheries and Aquaculture Rome, 25-26 February 2020

Structure

- Climate adaptation of the fisheries and aquaculture sector from a policy perspective
- The role of policy makers
- Main advice

The most important challenge: the displacement of fish biomass

The effects of climate change on management (I): management areas becoming obsolete

Species:	Anchovy Engraulis encrasicolus	Zone:	8 (ANE/08.)	
Spain	29 700			
France	3 300			
Union	33 000			
TAC	33 000		Analytical TAC	

Source: ICES (2016)

The effects of climate change on management (II): Can fishing rights be fixed forever?

- Developing States and allocation of fishing rights under climate change
- Inter-RFMO management
- Fish entering unregulated areas
- Fishing before the fish goes
- Reinforcing RFMOs, a must

The effects of climate change on management (III): seafood, a more climate-friendly animnal protein

Food production and biodiversity loss

Mean greenhouse gas emissions per 2,000 kilocalorie diet pounds of CO_2 equivalents*

GRAPHIC: NGM ART. SOURCE: PETER SCARBOROUGH, OXFORD UNIVERSITY

Environmental impact (*) of animal source foods (Hilborn et al., 2018):

- Mollusc aquaculture and small pelagic capture fisheries, lowest impact
- Beef production and catfish aquaculture (with water circulation) highest impact

(*) energy use, greenhouse gas emisions, release of nutrients and acidifying compounds)

The animal protein of the future: more seafood and less beef

Agriculture run-off

Is the single-stock management efficient to maximize the production of seafood?

The US case: less o verfishing, more biomass at sea...but no more fish in the markets

Biomass indicator for groups of North Sea stocks. Source: ICES (2017)

The marine ecosystem: more stable than any of its components

The role of aquaculture

Mollusc aquaculture, the lowest carbon footprint of all animal protein sources (Hilborn et al., 2018)

The role of policy makers (I): Management in the information society: science vs. social media

IJmuiden, the Netherlands

The role of managers (II): Fisheries and aquaculture management vs. Environmental policy

Bottom trawling in the North Sea (ICES, 2017)

Who coordinates? How?

The role of managers (III): Fisheries and aquaculture in the wider context of marine spatial management

Who should have the right to occupy the maritime space?

The role of managers (IV): the structural policy to promote change or to preserve the *status quo*?

- Improving selectivity
- Reducing carbon footprint
- Reducing waste
- Improving marketing of low-value species

Main messages

- Climate change, a challenge but an opportunity: marine protein is "the perfect protein". Promoting sustainable but <u>full</u> utilisation.
- Fisheries management should be dynamic and manage the ecosystem
- As the fish moves, the allocation of fishing rights is challenged: equity problems arise that must be addressed.
- Food security, an essential element for ocean management.
- Fisheries and aquaculture vs. Environmental conservation: adversaries or collaborators?
- Many policy strands must change because of global warming. The biggest challenge is **policy inertia.**

